The Structural and Mechanical Properties of Al-2.5%wt. B4C Met-al Matrix Nano-composite Fabricated by the Mechanical Alloying

Authors

  • E. Borhani Department of Nano-Technology, Semnan University, Semnan, Iran
  • S. Alalhessabi Department of Materials Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Iran
  • S.A. Manafi Department of Materials Engineering, Islamic Azad University, Shahrood Branch, Shahrood, Iran
Abstract:

In this study, aluminum (Al) matrix reinforced with micro-particles (30 µm) and nano-particles (50 nm) boron carbide (B4C) were used to prepare Al-2.5%wt., B4C nano-composite and micro-composite, respectively, using mechanical alloying method. The mixed powders were mechanically milled at 5, 10, 15 and 20 hrs. The XRD results indicated that the crystallite sizes of both the micro-composite and nano-composite matrix decreased with increasing milling time, showing 55 nm and 40 nm, respectively. Mechanical testing results showed an increase in the flexural strength from 98 to 164 and 115 to 180 MPa, and an increase in the hardness from 60 to 118 and 75 to 130 HV for micro-composite and nano-composite, respectively. The results indicate that the strength and hardness of the nano-composite are higher than those of the micro-composite due to the presence of the fine particles.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the structural and mechanical properties of al-2.5%wt. b4c met-al matrix nano-composite fabricated by the mechanical alloying

in this study, aluminum (al) matrix reinforced with micro-particles (30 µm) and nano-particles (50 nm) boron carbide (b4c) were used to prepare al-2.5%wt., b4c nano-composite and micro-composite, respectively, using mechanical alloying method. the mixed powders were mechanically milled at 5, 10, 15 and 20 hrs. the xrd results indicated that the crystallite sizes of both the micro-composite and ...

full text

Effect of Particle Size on the Structural and Mechanical Properties of Al–AlN Nanocomposites Fabricated by Mechanical Alloying

Nanostructured Al composites with 2.5 wt.% aluminum nitride (AlN) were fabricated by powder metallurgy using mechanically milled aluminum powder mixed in a planetary ball mill with different particle sizes of AlN (50 nm and 1 μm) as reinforcement. After 20 h milling, the powders were die-pressed uniaxially in a steel die and then sintered at 670 °C for 2 h. The morphologies and properties of th...

full text

AZ31/HA-Zeolite Nano Crystalline Biocomposite Fabricated by Mechanical Alloying and Powder Metallurgy: Mechanical Properties

  Magnesium and its alloys are light, biodegradable, biocompatible metals that have promising applications as biomaterials. Magnesium is potentially useful for orthopedic and cardiovascular applications. However, the corrosion rate of this metal is so high that its degradation occurs before the end of the healing process. One of the ways to improve the corrosion rate is to compose it’s with cer...

full text

A Comparative Study of the Synthesis and Thermal Stability of Nanostrucrured Al and Al-Mg Powders Fabricated by Mechanical Alloying Technique

Nanostructured Al and Al-Mg (Mg 30 wt. %) powders with the mean crystallite sizes of 42 and 11 nm were prepared through the solid state ball milling technique. The milling process was performed for various times up to 12 h in argon atmosphere and the synthesized powders were in detail characterized by different techniques. The effect of milling time and Mg addition on the size, morphology, chem...

full text

az31/ha-zeolite nano crystalline biocomposite fabricated by mechanical alloying and powder metallurgy: mechanical properties

magnesium and its alloys are light, biodegradable, biocompatible metals that have promising applications as biomaterials. magnesium is potentially useful for orthopedic and cardiovascular applications. however, the corrosion rate of this metal is so high that its degradation occurs before the end of the healing process. one of the ways to improve the corrosion rate is to compose it’s with ceram...

full text

Experimental Investigation of Mechanical and Tribological Properties of Al-sic and Al-gr Metal Matrix Composite

This Investigation studies the Mechanical and Tribological behaviour [ i.e dry sliding behaviour] of Al matrix composites reinforced with SiC and Gr particulate up to 10%, to study the effect of reinforcement, Load, Sliding speed and Sliding distance on stir cast Al-SiC and Al-Gr Metal matrix composites. Parametric studies indicate that the hardness, tensile strength of Al-SiC composite is grea...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 1

pages  39- 44

publication date 2015-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023